công thức nhị thức newton

Nhị thức niu tơn là 1 mục chính cần thiết vô đề thi đua lớp 11 na ná THPTQG. Bài ghi chép này sẽ hỗ trợ học viên bắt cứng cáp lý thuyết và dạng bài xích luyện về: thăm dò thông số vô khai triển, thăm dò số hạng vô khai triển, tính tổng, rút gọn gàng biểu, chứng tỏ biểu thức, giải phương trình, bất phương trình chỉnh hợp ý tổng hợp trải qua những ví dụ.

1. Lý thuyết nhị thức niu tơn

1.1. Định lý khai triển nhị thức niu tơn

Trong lịch trình toán giải tích lớp 11 vẫn học tập, khai triển nhị thức niu tơn(ngắn gọn gàng là ấn định lý nhị thức) là 1 ấn định lý toán học tập về sự khai triển hàm nón của tổng. Định lý khai triển một nhị thức bậc n trở nên một nhiều thức với n+1 số hạng:

Bạn đang xem: công thức nhị thức newton

\left ( a+b \right )^{n}=\sum_{k=0}^{n}C_{n}^{k}a^{n-k}b^{k}=\sum_{k=0}^{n}C_{n}^{k}a^{k}b^{n-k}

\left ( C_{k}^{n} \right ) là số tổng hợp chập k của n thành phần (0\leqslant k\leqslant n). Ta với ấn định lý, số những tổng hợp chập k của n thành phần vẫn mang đến như sau: 

\left ( C_{k}^{n} \right )=\frac{n!}{(n-k)!k!}=\frac{(n-1)(n-2)(n-3)...(n-k+1)}{k!}

1.2. Công thức nhị thức niu tơn

1.2.1. Định lý

Với \forall n\epsilon N^{*} với cặp số (a,b) tớ có:  

Định lý nhị thức niu tơn lớp 11

1.2.2. Hệ quả 

\left (1+x\right)^{n}=C_{n}^{0}+xC_{n}^{1}+x^{2}C_{n}^{2}+...+x^{n}C_{n}^{x}

Đăng ký tức thì và để được những thầy cô ôn luyện kiến thức và kỹ năng ôn thi đua đảm bảo chất lượng nghiệp trung học phổ thông sớm tức thì kể từ bây giờ!!!

2. Các dạng toán nhị thức niu tơn

2.1. Cách thăm dò thông số vô khai triển và thăm dò số hạng vô khai triển

Với dạng toán này, những em hãy dùng số hạng tổng quát lác (số hạng loại k+1) của khai triển. Tiếp theo đòi biến hóa nhằm tách riêng rẽ phần biến đổi và phần thông số, tiếp sau đó phối kết hợp đề bài xích nhằm xác lập chỉ số k. Lưu ý số hạng bao gồm thông số + phần biến đổi.

2.1.1. Ví dụ nhị thức niu tơn với cơ hội thăm dò thông số vô khai triển

VD1: Hệ số của x^{31} vô khai triển \left ( x+\frac{1}{x^{2}} \right )^{40} là bao nhiêu?

Lời giải:

\left ( x+\frac{1}{x^{2}} \right )^{40}=\sum_{k=0}^{40}C_{40}^{k}x^{k}\left ( \frac{1}{x^{2}} \right )^{40-k}=\sum_{k=0}^{40}C_{40}^{k}x^{3k-80}

Hệ số của x31C_{40}^{k} với k vừa lòng ĐK 3k - 80 = 31 ⇔ k=37

Vậy thông số của x^{31} là C_{40}^{37} = 9880

VD2: Hệ số của x3 vô khai triển nhị thức niu tơn \left ( x^{2}+\frac{2}{x} \right )^{12} là bao nhiêu? 

Lời giải:

Áp dụng công thức khai triển niu tơn tớ có:

(x^{2} + \frac{2}{x})^{12} = \sum_{k = 0}^{12}C_{12}^{k}(x^{2})^{12 - k}.(\frac{2}{x})^{k} = \sum_{k = 0}^{12}C_{12}^{k}.2^{k}.x^{24-3k}

Ta có: 24 - 3k = 3 \Leftrightarrow k = 7

Vậy thông số x3 trong khai triển là a3 = C_{12}^{7}.2^{7} = 101376 

2.1.2. Ví dụ về phong thái thăm dò số hạng vô khai triển 

VD1: Tìm số hạng không tồn tại x vô khai triển của nhị thức sau: \left ( x+\frac{1}{x} \right )^{12}$ ; $x\neq 0

Lời giải:

Số hạng tổng quát lác vô khai triển \left ( x+\frac{1}{x} \right )^{12} là C_{12}^{k}x^{12-k}\frac{1}{x}^{k}=C_{12}^{k}x^{12-2k}

Số hạng không tồn tại x ứng với k vừa lòng 12 - 2k = 0 ⇔ k=6 

=> số hạng ko chứa chấp x là C_{12}^{6}=924

VD2: Số hạng ko chứa chấp x vô khai triển: \left ( x-\frac{2}{\sqrt{x}} \right )^{n} biết A_{2}^{n}=C_{n}^{n-2}+C_{n}^{n-1}+4n+6

Lời giải:

A_{2}^{n} = C_{n}^{n - 2} + C_{n}^{n - 1} + 4n + 6 \Leftrightarrow n(n - 1) = \frac{n(n-1)}{2!} + n + 4n + 6 \Leftrightarrow n = 12

Theo khai triển nhị thức Newton thì

(x - \frac{2}{\sqrt{x}})^{n} = \sum_{k = 0}^{12}(-1)^{k}C_{12}^{k}.x^{12 - k}.(\frac{2}{\sqrt{x}})^{k} = \sum_{k = 0}^{12}(-1)^{k}2^{k}C_{12}^{k}.x^{12 - k - \frac{k}{2}}

Ta xét phương trình:

12 - k - \frac{k}{2} = 0 \Leftrightarrow k = 8

Vậy tớ rất có thể Kết luận số hạng ko chứa chấp x vô khai triển (x - \frac{2}{\sqrt{x}})^{n} là:

a_{0} = (-1)^{8}.2^{8}C_{12}^{8} = 126720

VD3: Tìm số hạng chứa chấp x^{\frac{10}{3}} vô khai triển của nhị thức niu tơn của \left ( x\sqrt[3]{x}-\frac{2}{x^{2}} \right )^{10}

Lời giải:

Áp dụng công thức khai triển niu tơn tớ có:

(x\sqrt[3]{x} - \frac{2}{x^{2}})^{10} = \sum_{k = 0}^{10}(-1)^{k}C_{10}^{k}(x\sqrt[3]{x})^{10-k}.(\frac{2}{x^{2}})^{k}

= \sum_{k = 0}^{10}(-1)^{k}C_{10}^{k}(x^{\frac{4}{3}})^{10-k}.\frac{2^{k}}{x^{2k}}

= \sum_{k = 0}^{10}(-1)^{k}.2^{k}.C_{10}^{k}.x^{\frac{4}{3}(10-k) - 2k}

Ta xét phương trình \frac{4}{3}(10-k) - 2k = \frac{10}{3} \Leftrightarrow k = 3

Vậy số hạng chứa x^{\frac{10}{3}} trong khai triển của nhị thức Newton của \left ( x\sqrt[3]{x}-\frac{2}{x^{2}} \right )^{10} là:

a_{\frac{10}{3}} = (-1)^{3}.2^{3}.C_{1}^{3}0x^{\frac{10}{3}} = -960x^{\frac{10}{3}}

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng quãng thời gian học tập kể từ tổn thất gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo đòi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks hùn tăng cường thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền vô quy trình học tập tập

Đăng ký học tập demo không lấy phí ngay!!

2.2. Rút gọn gàng đẳng thức, chứng tỏ biểu thức

Phương pháp: 

  • Nhận xét Việc kể từ ê lựa chọn hàm số phù phù hợp với tổng đẳng thức, bất đẳng thức (thông thông thường tớ hoặc dùng những hàm cơ bạn dạng \left ( x+1 \right )^{n},\left ( 1+x \right )^{n},\left ( 1-x \right )^{n},\left ( x-1 \right )^{n}.

  •  Khai triển nhị thức vừa vặn tìm ra và dùng những quy tắc biến hóa đại số, giải tích để sở hữu được dạng phù phù hợp với đề bài xích. 

  • Chọn độ quý hiếm của x mang đến tương thích để sở hữu được biểu thức như nhằm bài xích Thông thưởng tớ lựa chọn x là những số 1 hoặc -1 (cũng rất có thể \pm 2,\pm 3...). 

Vậy tớ đã đạt được tổng hoặc mệnh đề rất cần được chứng tỏ.

2.2.1. Ví dụ về rút gọn gàng đẳng thức

VD1: Tính tổng: S=C_{3030}^{0}-2C_{3030}^{1}+2^{2}C_{3030}^{2}-2^{3}C_{3030}^{3}+...+3^{3030}C_{3030}^{3030}

Lời giải: 

Theo công thức nhị thức Niu tơn lớp 11 với a = 1, b= -2 tớ được:

\left(1-2\right)^{3030}=C_{3030}^{0}1^{3030}-2C_{3030}^{1}1^{3029}+2^{2}C_{3030}^{2}1^{3028}-...+3^{3030}C_{3030}^{3030}

Xem thêm: bài nghe tiếng anh lớp 8

VD2: Rút gọn gàng biểu thức sau:

A= 2.1C_{n}^{2}-3.2C_{n}^{3}+...+n(n-1)(-1)C_{n}^{n}

Lời giải:

a) Ta có:

(1 - x)^{n} = C_{n}^{0} - C_{n}^{1}x + C_{n}^{2}x^{2} - C_{n}^{3}x^{3} +...+ (-1)^{n}C_{n}^{n}x^{n} (1)

Ta lấy đạo hàm bậc nhì theo đòi x cả nhì vế của phương trình (1) tớ được:

-n(1 - x)^{n - 1} = -C_{1}^{n} + 2C_{n}^{2}x - 3C_{n}^{3}x^{2} + ...+ n(-1)^{n}C_{n}^{n}x^{n - 1}

n(n - 1)(1 - x)^{n - 2} = 2.1.C_{n}^{2} - 3.2C_{n}^{3}x + ...+ n(n - 1)(-1)^{n}C_{n}^{n}x^{n - 2} (2)

Thay x = 1 vô phương trình (2) tớ được:

0 = 2.1.C_{n}^{2} - 3.2C_{n}^{3}+...+n(n - 1)(-1)^{n}C_{n}^{n} \Leftrightarrow A = 0

2.2.2. Ví dụ chứng tỏ biểu thức

VD1: Chứng minh rằng: C_{2001}^{0}+3^{2}C_{2001}^{2}+...+3^{2000}C_{2001}^{2000}=2^{2000}(2^{2001}-1)

Lời giải:

\left ( 1+x \right )^{n}=C_{n}^{0}+C_{n}^{1}x+C_{n}^{2}x^{2}+...+C_{n}^{n}x^{n}

Cho n = 2001 và x = 3 tớ được:

4^{2021}=C_{2021}^{0}+3C_{2021}^{1}+...+3^{2021}C_{2021}^{2021}          (1)

Cho n = 2001 và x = -3 tớ được:

-2^{2021}=C_{2021}^{0}-3C_{2021}^{1}+...-3^{2021}C_{2021}^{2021}       (2)

 (1) + (2) vế theo đòi vế tớ được:

\frac{1}{2}\left ( 4^{2021}-2^{2021}\right )=2^{2000}\left ( 2^{2021}-1 \right )=C_{2021}^{0}+3^{2}C_{2021}^{2}+...+3^{2000}C_{2021}^{2000}

Điều nên bệnh minh

VD2: Chứng minh rằng:

C_{n}^{0}+C_{n}^{2}+C_{n}^{4}+...=C_{n}^{1}+C_{n}^{3}+C_{n}^{5}+...=2^{n-1}

Lời giải:

Ta có: (1 + x)^{n} = C_{n}^{0}.x^{0} + C_{n}^{1}.x + C_{n}^{2}.x^{2} +...+ C_{n}^{n}.x^{n}

\rightarrow (1 + 1)^{n} = C_{n}^{0} + C_{n}^{1} + C_{n}^{2} +...+ C_{n}^{n} (1)

và (1 - x)^{n} = C_{n}^{0} - C_{n}^{1} + C_{n}^{2} -...+ (-1)^{n}.C_{n}^{n}.x^{n}

\rightarrow (1 - 1)^{n} = C_{n}^{0} - C_{n}^{1} + C_{n}^{2} -...+ (-1)^{n}C_{n}^{n} (2)

Ta lấy phương trình (1) + (2) tớ được:

2^{n} = 2(C_{n}^{0} + C_{n}^{2} + C_{n}^{4}+...)

\rightarrow 2^{n - 1} = 2(C_{n}^{0} + C_{n}^{2} + C_{n}^{4}+...)

Lấy (1) - (2) tớ được

2^{n} = 2(C_{n}^{1} + C_{n}^{3} + C_{n}^{5}+...)

\rightarrow 2^{n - 1} = 2(C_{n}^{1} + C_{n}^{3} + C_{n}^{5}+...)

Vậy C_{n}^{0} + C_{n}^{2} + C_{n}^{4}+... = C_{n}^{1} + C_{n}^{3} + C_{n}^{5}+... = 2^{n-1}

2.3. Giải phương trình, bất phương trình chỉnh hợp ý tổ hợp

Đối với dạng bài xích này, các em dùng những công thức tính số thiến, tổng hợp chỉnh hợp ý nhằm biến hóa phương trình tiếp sau đó đánh giá ĐK của nghiệm và Kết luận.

VD1: Tìm n biết C_{n}^{1}+C_{n}^{2}=15

Lời giải: 

Điều khiếu nại n\geqslant 2

Giả thiết tương tự với:

n+\frac{n(n-1)}{2}=15\Leftrightarrow n^{2}+n-30=0\Leftrightarrow n=5 hoặc n=-6 (loại)

VD2: Cho khai triển \left ( 1+2x \right )^{n}=a_{0}+a_{1}x+a_{2}x^{2}+...+a_{n}x^{n}. Tìm số vẹn toàn dương n biết a_{0}+8a_{1}=2a_{2}=1.

Lời giải: 

Áp dụng công thức khai triển niu tơn tớ có:

(1 + 2x)^{n} = \sum_{k = 0}^{n}C_{n}^{k}(2x)^{k} = \sum_{k = 0}^{n}C_{n}^{k}.2^{k}.x^{k}

Từ ê, tớ với thông số của xk là a_{k} = 2^{k}C_{n}^{k}

Theo fake thiết vẫn mang đến của đề bài xích tớ có:

C_{n}^{0} + 8.2.C_{n}^{1} = 2.2^{2}.C_{n}^{2} + 1 \Leftrightarrow 1 + 16n = 8.\frac{n(n - 1)}{2} + 1 \Leftrightarrow 4n^{2} - 20n = 0

\Leftrightarrow n = 5

VD3: Tìm số bất ngờ n thỏa mãn: C_{2n}^{0}+C_{2n}^{2}+C_{2n}^{4}+...+C_{2n}^{2n}=2^{2015}

Lời giải:

Đặt:

A = C_{2n}^{0} + C_{2n}^{2} + C_{2n}^{4} +...+ C_{2n}^{2n}

B = C_{2n}^{1} + C_{2n}^{3} + C_{2n}^{5} +...+ C_{2n}^{2n - 1}

Từ ê tớ suy đi ra được:

\left\{\begin{matrix} A + B = C_{2n}^{0} + C_{2n}^{1} + C_{2n}^{2} +...+ C_{2n}^{2n - 1} + C_{2n}^{2n} = (1 + 1)^{2n} = 2^{2n}\\A - B = C_{2n}^{0} - C_{2n}^{1} + C_{2n}^{2} -...- C_{2n}^{2n - 1}+ C_{2n}^{2n} = (1 - 1)^{2n} = 0 \end{matrix}\right.

\Rightarrow A = \frac{2^{2n}}{2} = 2^{2015} \Leftrightarrow 2n = năm 2016 \Leftrightarrow n = 1008

Nhận tức thì bí quyết trọn vẹn cỗ cách thức giải từng dạng bài xích vô đề thi đua Toán trung học phổ thông Quốc Gia ngay

Trên đó là toàn cỗ lý thuyết và những dạng bài xích luyện của hệ thức nhị thức niu tơn vô lịch trình Toán 11. Để đạt được thành quả cao các  em nên thực hiện thêm thắt nhiều hình thức bài xích không giống nữa. Hy vọng với nội dung bài viết này, những em học viên rất có thể giải những bài xích luyện kể từ cơ bạn dạng cho tới nâng lên thật thành thục. Để học tập và ôn luyện nhiều hơn thế những phần kiến thức và kỹ năng lớp 12 đáp ứng ôn thi đua trung học phổ thông Quốc gia môn Toán, những em truy vấn Vuihoc.vn và ĐK khóa đào tạo và huấn luyện tức thì kể từ ngày hôm nay nhé!

Bài ghi chép xem thêm thêm:

Xem thêm: có mấy loại bản vẽ kỹ thuật

Hoán vị, tổng hợp và chỉnh hợp

Quy tắc đếm

Phép demo và biến đổi cố